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Abstract - This paper proposes the use of potential 

field and biased Monte Carlo rollout in General Video 

Game Playing (GVGP). Monte-Carlo Tree Search is a 

famous technique for General Video Game Playing, 

thanks to its adaptability. However, since the rollouts 

are performed randomly, it may not be able to search 

the game state efficiently. Existing research has 

attempted to bias the rollout by using Euclidean 

distances to the closest sprites as features, and 

training the bias weights with Evolutionary Strategy. In 

this paper, we propose the use of potential field 

features instead of Euclidean distances as the rollout 

bias, so as to further improve the performance of 

Monte-Carlo Tree Search in General Video Game 

Playing. 
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1 ．INTRODUCTION 

 While video game AI has been a popular research field, 

most game AI programs created by researchers focus on a 

single game, such as Pac-Man or StarCraft, and can only 

play one specific game. Such research approach limits the 

applicability of the proposed methods, as the proposed AI 

technique is only applied to one single game. To address 

such problem and to imitate human intelligence, 

researchers have recently embarked on researches in 

General Video Game Playing (GVGP) AI, where 

researchers aim at the creation of AI that can play a wide 

range of video game, without knowing the game rules 

beforehand. 

 Monte-Carlo Tree Search (MCTS) is a famous method in 

the field of GVGP. Relying on random rollouts to determine 

the best action, Monte-Carlo Tree Search does not require 

knowledge of the game rules or any heuristics, thus making 

itself a widely applicable strategies in various kinds of 

games. However, due to its stochastic nature, MCTS often 

cannot search the game space in an efficient manner, and 

cannot effectively learn the game rules through past 

experience.  

 Acknowledging the weakness of MCTS, researchers in 

the past has attempted to bias the rollouts of MCTS with 

the use of feature extraction and weight bias. While such 

attempts have successfully improved the performance of 

MCTS in GVGP, in this paper, we propose the use of 

potential field technique in biasing MCTS rollout, which 

leads to a better performance than the existing method in 

GVGP.  

 

2．THE GVG-AI FRAMEWORK 

The GVG-AI Framework is developed by researchers 

from University of Essex and other institutions, in order to 

support the development of game AIs that can excel in 

many games rather than one specific game [1]. This 

framework specializes at the creation of classic Atari-2600-

style games, including Pac-Man, Space Invaders and 

Legend of Zelda, putting emphasis on real-time and fast-

paced game, rather than turn-based games. Using this 

framework, the first GVG-AI Competition1 was organized at 

the 2014 IEEE CIG conference.  

The GVG-AI framework uses the Video Game 

Description Language (VGDL) to define its games [2]. 

Featuring a Python-like syntax, VGDL allows game rules to 

be defined textually, as shown in Fig. 1, which shows how 

the Zelda game is defined in the GVG-AI Framework. In 

Zelda, the avatar has to collect the key on the map and 

reach the exit, while fighting off monsters with a sword. In 

the SpriteSet, four categories of sprites are defined for the 

game, namely goal, key, sword, and movable (which 

 
Fig. 1.  The VGDL rule definition of the Zelda game 



 

includes both avatar and enemy).  The InteractionSet 

defines how sprites interact with each other; for example, if 

the sword touches enemy, the enemy will be killed and 

score will increase, if avatar with no key collides with the 

key, the avatar will be withkey and can approaches the exit. 

The player wins the game if the avatar withkey has “killed” 

the goal, but loses if the avatar is killed by the monsters, as 

defined in the TerminationSet. 

With the basic game rules defined, the game creator can 

define the game level using the symbol defined in the 

LevelMapping in the game rules. If not stated otherwise, “w” 

represents wall and “A” represents avatar in the level 

mapping. The game engine, written in Java, will read both 

the game rules VGDL file and the level file, and generate a 

playable game level, as illustrated in Fig. 2.  

Unlike traditional research in game AI, game rules 

defined in VGDL are hidden from AI developers in GVGP, 

who have to develop an AI that can excel in games without 

knowing the rules beforehand, normally by utilizing the 

simulation method provided by the framework for learning 

and decision-making. The nature of GVGP makes non-

heuristic method such as MCTS a powerful tool. At the 

same time, researchers are also exploring techniques 

which can improve MCTS in a GVGP setting.  

 

3．RELATED RESEARCH 

3.1 Fast-Evolutionary MCTS in GVGP 

Perez et al. proposed a Fast Evolutionary Adaption for 

Monte Carlo Tree Search [3], where a weight vector is 

trained by (1+1) Evolutionary Strategy and applied to bias 

the rollout of MCTS. In normal MCTS, rollouts are 

performed randomly, and the reward (or penalty) received 

at the end of the rollout is back-propagated to update the 

values of all nodes on the branch. Instead of random rollout, 

Perez et al. proposed the use of biased rollout, where the 

probability of which action will be taken in the rollout is 

determined by a weight vector and feature extracted from 

the game state. Assuming there are N features extracted 

from a game state S, and there are A actions available in 

the current state. The relative strength ai of each action i is 

calculated as a weighted sum of feature values fj of each 

feature j: 

 

𝑎𝑖 = ∑ 𝑤𝑖𝑗𝑓𝑗
𝑁
𝑗=1        (1) 

 

 After the relative strength of all actions in A have been 

calculated, the softmax function is then used to calculate 

the probability of taking each action: 

 

𝑃(𝑎𝑖) =
𝑒−𝑎𝑖

∑ 𝑒
−𝑎𝑗𝐴

𝑗=1

        (2) 

 

The weight vector is trained using (1+1) Evolutionary 

Strategy, with the reward received at the end of the rollout 

used as the fitness of the weight. The weight vector wij is 

evolved after certain number of rollouts have been 

performed in MCTS. On the other hand, features being 

extracted from the game state are hand-coded by the AI 

developer for the specific game. For example, in Space 

Invaders, Perez et al. picked the distance between the 

cannon and the rightmost or leftmost alien as the feature. 

This proposed method provided good performance in 

Space Invaders and Mountain Car.  

Perez et al. further improved the Fast Evolutionary 

MCTS by combining it with knowledge acquisition [4]. The 

Knowledge-based Fast Evolutionary MCTS (KB Fast-Evo 

MCTS) is based on the proposed method in [3], but 

adapted it to the GVG-AI platform. Since the game rules 

are unknown to the AI developer, the feature extraction can 

no longer be hand-coded beforehand. Instead, the 

Euclidean distances to the closest NPC, resource, non-

static object and portal are extracted as features for every 

game state.   

 
Fig. 2.  A Zelda game level defined in textual form, and the actual game generated 



 

The rollout result is not only used to evolve the weight 

vector, but also to acquire knowledge of the game rules. 

Through the rollout performed in the past, the AI can know 

which type of sprite is beneficial (generate a score gain 

when collided) and which is hostile (generate a score loss 

when collided). For rollouts that do not result in a score 

difference at the end, those reduced the distance between 

the avatar and beneficial or unknown sprites will receive a 

higher reward. The rollout reward will affect the action 

selection by MCTS and the evolution of the weight.  

 Whereas the Knowledge-based Fast Evolutionary MCTS 

proved itself a vast enhancement ordinary MCTS, there is 

still room for improvement. While using Euclidean 

distances as features is simple and intuitive, such features 

fail to take into account the direction and position of the 

sprite. A sprite standing left to the avatar and another sprite 

standing right to it will have the same feature values, 

provided that the Euclidean distances are the same. The 

feature extraction employed by Perez et al. oversimplifies 

the game state, and replacing Euclidean distances with 

another set of features should provide better result.  

 

3.2 Potential Field in Game AI 

The concept of potential field has provided us inspiration 

for a new feature definition in biased MCTS. Proposed by 

Khatib, potential field originated as an application in 

robotics [5]. In the potential field approach, the robot moves 

in a field of force, where the goal is an attractive pole and 

the obstacles are repulsive surface. The robot moves 

through the space by heading towards attractive pole while 

avoiding repulsions.  

Potential field is found useful not only in robotics, but 

also in game AI. Hagelback applied potential field in 

StarCraft, a famous computer strategy game, and created 

an AI that can navigate 2D game maps using a 

combination of potential field and A* algorithm [6]. In the 

proposed method, interesting objects are assigned 

attracting force field and obstacles are assigned repulsing 

force field. The force field is strongest at its center but 

generally degrade over distance from the center. After 

calculating all the effects of potential fields emitted by 

nearby objects, the agent will then move to the position 

with the highest potential, meaning the most attracting 

position.  The total potential at the position (x, y) is 

calculated by:  

𝑝𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦) = ∑ 𝑤𝑖𝑝𝑖(𝑥, 𝑦)𝑁
𝑖=1     (3) 

 In (3), N is the number of objects that are affecting 

position (x, y), and wi is the weight for subfield i. Hagelback 

also proposed an improvement to the formula, which 

consider only the strongest enemy field, instead of the 

weighted sum of all enemy field, so as to avoid being stuck 

in a local optima, and to avoid mistakenly marching into 

enemy’s territory. Nonetheless, Hagelback’s work has 

shown that potential field is useful in navigating 2D game 

map, and the next section of this paper will propose 

applying potential field as a bias for MCTS. 

 

4．PROPOSED METHOD 

 Our proposed method is based on the KB Fast-Evo 

MCTS proposed in [4], but replaces the Euclidean distance 

feature with a potential-field-based feature. During the 

biased rollout, the probability that the avatar will move into 

a position is determined by its total potential, avatar is more 

likely to move to a position with higher total potential. The 

total potential at a position is calculated by aggregating all 

subfield generated by the closest NPC, resource, non-

static object and portal, using a formula similar to (3).  

Whether a sprite emits attracting force or repulsive force 

depends on whether it is a beneficial sprite, unknown sprite 

or a hostile sprite, as determined by the knowledge base. 

The strength of force of each subfield is trained using 

Evolutionary Strategy, similar to how Fast Evolutionary 

MCTS trains its weight vector.  

While both methods are based on Perez et al.’s KB Fast-

Evo MCTS, our proposed method differs significantly from 

the Knowledge-based Pathfinding MCTS proposed in [7]. 

The method proposed in [7] combines Perez et al.’s 

method with pathfinding algorithm; in the first 50 game 

steps of each game, the AI will play the game using the 

exact KB Fast-Evo MCTS as described in [4], and acquire 

knowledge of the game through the biased rollouts. After 

that, the AI will switch to pathfinding mode, and identify 

targets by consulting its knowledge base. On the other 

hand, our method does not use any pathfinding algorithm. 

Instead, our method improves KB Fast-Evo MCTS by 

defining a new set of features and weight vector for the 

biased rollout. The following paragraphs will detail the 

feature extraction, weight training and biased rollout in our 

proposed method.  

4.1 Feature Extraction 

For each game state, the positions of the closest NPC, 

resource, non-static object and portal, as well as the 

position of the avatar, are extracted as features. In most 

games featured in the GVG-AI framework, the game map 

 
Fig. 3. An example game state in GVG-AI games 



 

is a 2D grid in which position can be represented as 

integral coordinates. Thus, the position of every sprite can 

be easily represented by two integers and stored in 

memory. In case that the game supports decimal 

coordinates, the decimal values are rounded down to 

integers.  

For instance, in the game state illustrated by Fig. 3, the 

avatar is positioned at the center, in between a resource 

and a pink NPC, which have a type number 1 and 2 

respectively. The coordinates of the upper-leftmost corner 

are defined as (0, 0). The feature extraction function will 

extract [1: (0, 1)], [2: (4, 3)] and [A: (2, 2)] from the state, 

meaning that a sprite of type 1 is positioned at (0, 1), sprite 

of type 2 at (4, 3) and avatar (A) at (2, 2). Later in the 

biased rollout, potential fields will be assigned to these 

positions.  

A point to be noted here is that, it is easy to calculate the 

Manhattan distance between two object oi and oj using this 

feature extraction:  

𝑚𝑎𝑛𝐷𝑖𝑠𝑡(𝑜𝑖 ,  𝑜𝑗) =  |𝑜𝑖 . 𝑥 − 𝑜𝑖 . 𝑥| + |𝑜𝑖 . 𝑦 − 𝑜𝑖 . 𝑦|  (4) 

 In (4), oi.x and oi.y represents the x coordinate and y 

coordinate of object oi respectively. The Manhattan 

distance will be used in calculating the force of field at a 

position in the biased rollout. 

4.2 Weight Training 

The weight vector W contains a decimal weight value wi 

for each sprite type i in the game. The value of wi will 

determine the strength and affecting area of the sprite type 

i during the biased rollout. Thus, the number of dimensions 

of W equals to the number of sprite types in the game. 

This weight vector is trained by a (4 + 1) Evolutionary 

Strategy, which maintains a population of 4 individuals plus 

1 mutant. Let avg(width, height) donates the average value 

of the width and height of the game map, the noise value nj 

and weight value wij for sprite type i of an individual j is 

initialized by:  

       𝑛𝑗 = avg(width, height)/ 5     (5) 

  𝑤𝑖𝑗 = avg(width, height) + 𝑛𝑗 × 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐸𝑟𝑟𝑜𝑟() (6) 

 The gaussianError() function provides a normally 

distributed decimal value with mean 0.0 and standard 

deviation 1.0. At the start of the program, 4 individuals will 

be generated using the above formulae. The fitness is set 

to negative infinity in the beginning.  

 Before the first rollout, two parents are selected 

randomly from the population, in order to generate a new 

mutant. Each weight value wij in the new mutant is selected 

randomly from either of the parents. Mutation is performed 

by adding a noise value, calculated by nj X gaussianError(), 

is to wij in the new mutant. The initial fitness of new mutant 

is set to 0. The new mutant is then used in biasing MCTS 

rollouts, the rewards from which are accumulated in the 

fitness value of the mutant.  

After 100 rollouts, an evolution will be performed to 

update the population and generate a new mutant. If the 

fitness value, i.e. the accumulated total rewards value of 

the 100 rollouts, is higher than the fitness of the worst 

individual in the population, the mutant will replace that 

individual and the evolution is considered a success; 

otherwise the mutant will be discarded and the evolution is 

failed. To generate a new mutant, a random individual and 

the best individual are selected as parents, following the 

crossover and mutation procedure described in the 

previous paragraph. The above process is iterated until the 

end of the game. The noise value nj will be increased if the 

evolution succeeds, and reduced if the evolution fails.  

4.3 Biased Rollout 

During every step in the biased rollout, the avatar will 

have to decide which direction (Up, Down, Left or Right) to 

move to. In random rollout, the direction is selected 

randomly. However, in our proposed method, the direction 

is selected according to the total potentials of each 

adjacent position.  

For each sprite type i in the feature set F, a potential field 

is created with the position fi as the center. The strength of 

the field equals to wi of the weight vector W, and the 

strength is decreased by 1 as the Manhattan distance from 

the sprite increases by 1. In other words, given a potential 

field of sprite i centered at pa and another position pb, if 

manDist(pa, pb) > wi, the potential field of sprite i will have 

no effect on the position pb.  

The field type of the sprite is decided by the knowledge 

base. If past experience has shown that the sprite type 

generates a score gain, or if there is no record of that type 

in the knowledge base, it will be assigned an attracting 

force; on the other hand, if the sprite type begot score loss 

upon collision in the past, the sprite will be attached a 

repulsive force. In our implementation, attracting force is 

represented as positive decimal values (wi) while repulsive 

force as negative decimal values (-wi). 

 When deciding the next direction, the total potential of 

each neighboring position px, as illustrated in Fig 4, are 

calculated using the following formula: 

𝑝𝑡𝑜𝑡𝑎𝑙(𝑝𝑥) = ∑ 𝑠𝑖𝑔𝑛(𝑖)|𝑤𝑖 − 𝑚𝑎𝑛𝐷𝑖𝑠𝑡(𝑝𝑥 , 𝑝𝑖)|𝑁
𝑖=1  (7) 

 
Fig. 4. Neighboring positions of the avatar  



 

In (7), N is the number of objects that are affecting 

position px, and wi is the weight value for the type i. The 

return value of sign(i) is either 1 or -1, and is determined by 

whether type i is hostile, beneficial or unknown in the 

knowledge base.  

After calculating the total potential of all neighboring 
position, a roulette selection is performed on the four 
values to determine which position the avatar shall move 
into. Positions with higher potential have higher chance of 
being selected. In case there is negative value in the total 

potential values, |min
𝑥

𝑝𝑡𝑜𝑡𝑎𝑙(𝑝𝑥)| + 1  is added to all 

potential values to ensure all potential values are positive 
before the roulette selection.  

 There are games where the avatar can perform actions 

other than movements, e.g. in Zelda, the avatar can move 

in four directions and attack approaching enemies; in 

games like Seaquest and Aliens, the avatar can shoot at 

enemies besides moving. In these games, an additional 

weight for action wa is added into the weight vector and 

roulette selection is performed on the value wa along with 

all total potential values of neighboring positions. If action is 

selected, the avatar will perform the action instead of 

movement in the rollout. The value of wa is trained by 

Evolutionary Strategy along with other weight values.  

 Furthermore, there are games where movement is 

restricted. For example, in games like aliens and 

Eggomania, the avatar can only move horizontally, not 

vertically. In such cases, the potential values of the 

corresponding positions (pu and pd) are ignored in the 

roulette selection.  

 

5．EXPERIMENTS 

5.1  Comparison with KB Fast-Evo MCTS and MCTS 

 Experiments are conducted to compare the performance 

of our proposed method with the Perez et al.’s KB Fast-Evo 

MCTS and random MCTS. The test procedure is similar to 

that in [7]. In our experiment, each controller played all 

games in the training set and validation set of the 2014 

GVG-AI Competition, and the controllers’ performance in 

these games were compared. In each set, there are 10 

games, each of which has 5 levels. For every game level, 

each controller will play the game until the game ends, 

meaning either the controller wins or loses the game, or the 

time limit (2000 game steps for most games) is reached. 

To ensure fairness, each game used the same random 

seed for all controllers and all levels. The tests were 

performed in a Mac OS X environment. Similar to the GVG-

AI Competition, the controller with the highest win 

percentage was considered victorious among the three 

controllers. The average scores were compared instead, if 

the win percentages were the same.  

In our experiment, the source code of KB Fast-Evo 

MCTS was provided by the main author of [4]. The 

TABLE I.  EVALUATION RESULTS USING THE 2014 TRAINING SET 

 
Proposed Method KB Fast-Evo MCTS Random MCTS 

Avg Win_Rate Avg Win_Rate Avg Win_Rate 

aliens 70.8 1 64.12 1 61.6 0.96 

boulderdash 11.88 0.08 8.16 0 7.32 0.04 

butterflies 25.6 1 24.16 1 28.8 0.96 

chases 3.44 0.12 2.76 0.08 0.84 0 

flogs -1.12 0.24 -1.28 0.24 -1.36 0.08 

missilecommand 3.84 0.56 4.2 0.64 0.72 0.36 

portals 0.2 0.2 0.24 0.24 0.08 0.08 

sokoban 0.92 0.28 1.04 0.24 0.72 0.08 

survivezombies 34.76 0.4 31.4 0.4 32.12 0.4 

zelda 2.76 0.04 1.68 0 2.28 0.04 

Victory 8 2 0 

TABLE II.  EVALUATION RESULTS USING THE 2014 VALIDATION SET 

 
Proposed Method KB Fast-Evo MCTS Random MCTS 

Avg Win_Rate Avg Win_Rate Avg Win_Rate 

camelRace -0.6 0.16 -0.2 0.4 -0.68 0.12 

digdug 28.44 0 22.16 0 15.88 0 

firestorms -0.96 0.08 -1.36 0 -3.08 0 

inflection 5.36 0.76 5.48 0.84 6.36 0.84 

firecaster 6.88 0 5.32 0 6.88 0 

overload 14.4 0.16 14 0.08 13.72 0.08 

pacman 133.96 0 111.96 0 152.68 0 

seaquest 289.76 1 530.16 0.88 586.36 0.6 

whackmole 9.52 0.84 3.4 0.44 1.56 0.68 

eggomania 8.56 0.16 2.4 0 1.84 0 

Victory 6 1 2 

 



 

sampleMCTS package on the GVG-AI Competition official 

webpage, which was based on Upper Confidence Tree, 

was used as the random MCTS. The Rollout out depth was 

set to 10 for all MCTS rollouts.  

As illustrated in Table 1 and Table 2, our proposed 

method achieved a better performance overall. Our method 

won in 16 games out of 20 games against Perez et al.’s 

method; also, our method won in 17 games out of 20 

games against random MCTS, and drew 1 game. In 

contrast to random MCTS that performs rollouts randomly, 

our method used knowledge base and feature extraction to 

search the game space more effectively. Compared with 

the Euclidean distance feature used by Perez et al.’s 

method, the potential-field-based bias used by our 

proposed method were able to preserve both distances 

and positions of sprites, without oversimplifying the game 

state. Therefore, our proposed method is able to 

outperform both Perez et al.’s method and random MCTS.  

5.2  A Closer Look at the Weight Vector in aliens 

 In order to observe how the weight evolves, a closer look 

at the weight vector in an aliens level was observed and 

plotted in Fig. 5. In aliens, illustrated by Fig. 6, avatar gains 

score by shooting missile at the aliens and the barricades, 

while avoiding bombs dropped by the aliens. As shown in 

Fig. 5, the weight for ACTION (shootnig) and aliens’ bomb 

increased through the game, meaning the avatar had 

higher tendency to shoot missile and avoid aliens’ bombs 

in the rollout, which is a logical tactics in the game. The 

weight for barricade was maintained at a relatively high 

level, as the result, the avatar stayed closer to the 

barricade and shot more often at barricade, leading the 

higher score gain. Overall, the evolution of weight vector 

led the avatar to behave in a way that engendered higher 

score, thus illustrating how evolution of weight vector 

begets better performance than other method.  

 

6．CONCLUSIONS AND FUTURE WORKS 

 This paper proposes the use of potential field as bias in 

Monte Carlo rollouts in a GVGP settings, and experiment 

shows that potential field bias offered an improvement over 

existing method that used Euclidean distance as feature. In 

the current stage, our method uses a simple Evolutionary 

Strategy to train the weight vector. As a future work, we 

aim at further advancing this method by replacing 

Evolutionary Strategy with machine learning technique.  
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Fig. 5. Changes of weight vector values in an aliens game  
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Fig. 6. A Screenshot of an aliens game 


