
2015年度情報処理学会関西支部 支部大会

†Intelligent Computer Entertainment Laboratory, Ritsumeikan University
1. http://gvgai.net/

G-107

Biasing Monte-Carlo Rollouts with Potential Field in
General Video Game Playing

Chun Yin Chu†, Tomohiro Harada†, Ruck Thawonmas†

Abstract - This paper proposes the use of potential

field and biased Monte Carlo rollout in General Video

Game Playing (GVGP). Monte-Carlo Tree Search is a

famous technique for General Video Game Playing,

thanks to its adaptability. However, since the rollouts

are performed randomly, it may not be able to search

the game state efficiently. Existing research has

attempted to bias the rollout by using Euclidean

distances to the closest sprites as features, and

training the bias weights with Evolutionary Strategy. In

this paper, we propose the use of potential field

features instead of Euclidean distances as the rollout

bias, so as to further improve the performance of

Monte-Carlo Tree Search in General Video Game

Playing.

 Keywords – General Video Game Playing, Monte-

Carlo Tree Search, Game AI, Potential Field

1 ．INTRODUCTION

 While video game AI has been a popular research field,

most game AI programs created by researchers focus on a

single game, such as Pac-Man or StarCraft, and can only

play one specific game. Such research approach limits the

applicability of the proposed methods, as the proposed AI

technique is only applied to one single game. To address

such problem and to imitate human intelligence,

researchers have recently embarked on researches in

General Video Game Playing (GVGP) AI, where

researchers aim at the creation of AI that can play a wide

range of video game, without knowing the game rules

beforehand.

 Monte-Carlo Tree Search (MCTS) is a famous method in

the field of GVGP. Relying on random rollouts to determine

the best action, Monte-Carlo Tree Search does not require

knowledge of the game rules or any heuristics, thus making

itself a widely applicable strategies in various kinds of

games. However, due to its stochastic nature, MCTS often

cannot search the game space in an efficient manner, and

cannot effectively learn the game rules through past

experience.

 Acknowledging the weakness of MCTS, researchers in

the past has attempted to bias the rollouts of MCTS with

the use of feature extraction and weight bias. While such

attempts have successfully improved the performance of

MCTS in GVGP, in this paper, we propose the use of

potential field technique in biasing MCTS rollout, which

leads to a better performance than the existing method in

GVGP.

2．THE GVG-AI FRAMEWORK

The GVG-AI Framework is developed by researchers

from University of Essex and other institutions, in order to

support the development of game AIs that can excel in

many games rather than one specific game [1]. This

framework specializes at the creation of classic Atari-2600-

style games, including Pac-Man, Space Invaders and

Legend of Zelda, putting emphasis on real-time and fast-

paced game, rather than turn-based games. Using this

framework, the first GVG-AI Competition1 was organized at

the 2014 IEEE CIG conference.

The GVG-AI framework uses the Video Game

Description Language (VGDL) to define its games [2].

Featuring a Python-like syntax, VGDL allows game rules to

be defined textually, as shown in Fig. 1, which shows how

the Zelda game is defined in the GVG-AI Framework. In

Zelda, the avatar has to collect the key on the map and

reach the exit, while fighting off monsters with a sword. In

the SpriteSet, four categories of sprites are defined for the

game, namely goal, key, sword, and movable (which

Fig. 1. The VGDL rule definition of the Zelda game

includes both avatar and enemy). The InteractionSet

defines how sprites interact with each other; for example, if

the sword touches enemy, the enemy will be killed and

score will increase, if avatar with no key collides with the

key, the avatar will be withkey and can approaches the exit.

The player wins the game if the avatar withkey has “killed”

the goal, but loses if the avatar is killed by the monsters, as

defined in the TerminationSet.

With the basic game rules defined, the game creator can

define the game level using the symbol defined in the

LevelMapping in the game rules. If not stated otherwise, “w”

represents wall and “A” represents avatar in the level

mapping. The game engine, written in Java, will read both

the game rules VGDL file and the level file, and generate a

playable game level, as illustrated in Fig. 2.

Unlike traditional research in game AI, game rules

defined in VGDL are hidden from AI developers in GVGP,

who have to develop an AI that can excel in games without

knowing the rules beforehand, normally by utilizing the

simulation method provided by the framework for learning

and decision-making. The nature of GVGP makes non-

heuristic method such as MCTS a powerful tool. At the

same time, researchers are also exploring techniques

which can improve MCTS in a GVGP setting.

3．RELATED RESEARCH

3.1 Fast-Evolutionary MCTS in GVGP

Perez et al. proposed a Fast Evolutionary Adaption for

Monte Carlo Tree Search [3], where a weight vector is

trained by (1+1) Evolutionary Strategy and applied to bias

the rollout of MCTS. In normal MCTS, rollouts are

performed randomly, and the reward (or penalty) received

at the end of the rollout is back-propagated to update the

values of all nodes on the branch. Instead of random rollout,

Perez et al. proposed the use of biased rollout, where the

probability of which action will be taken in the rollout is

determined by a weight vector and feature extracted from

the game state. Assuming there are N features extracted

from a game state S, and there are A actions available in

the current state. The relative strength ai of each action i is

calculated as a weighted sum of feature values fj of each

feature j:

𝑎𝑖 = ∑ 𝑤𝑖𝑗𝑓𝑗
𝑁
𝑗=1 (1)

 After the relative strength of all actions in A have been

calculated, the softmax function is then used to calculate

the probability of taking each action:

𝑃(𝑎𝑖) =
𝑒−𝑎𝑖

∑ 𝑒
−𝑎𝑗𝐴

𝑗=1

 (2)

The weight vector is trained using (1+1) Evolutionary

Strategy, with the reward received at the end of the rollout

used as the fitness of the weight. The weight vector wij is

evolved after certain number of rollouts have been

performed in MCTS. On the other hand, features being

extracted from the game state are hand-coded by the AI

developer for the specific game. For example, in Space

Invaders, Perez et al. picked the distance between the

cannon and the rightmost or leftmost alien as the feature.

This proposed method provided good performance in

Space Invaders and Mountain Car.

Perez et al. further improved the Fast Evolutionary

MCTS by combining it with knowledge acquisition [4]. The

Knowledge-based Fast Evolutionary MCTS (KB Fast-Evo

MCTS) is based on the proposed method in [3], but

adapted it to the GVG-AI platform. Since the game rules

are unknown to the AI developer, the feature extraction can

no longer be hand-coded beforehand. Instead, the

Euclidean distances to the closest NPC, resource, non-

static object and portal are extracted as features for every

game state.

Fig. 2. A Zelda game level defined in textual form, and the actual game generated

The rollout result is not only used to evolve the weight

vector, but also to acquire knowledge of the game rules.

Through the rollout performed in the past, the AI can know

which type of sprite is beneficial (generate a score gain

when collided) and which is hostile (generate a score loss

when collided). For rollouts that do not result in a score

difference at the end, those reduced the distance between

the avatar and beneficial or unknown sprites will receive a

higher reward. The rollout reward will affect the action

selection by MCTS and the evolution of the weight.

 Whereas the Knowledge-based Fast Evolutionary MCTS

proved itself a vast enhancement ordinary MCTS, there is

still room for improvement. While using Euclidean

distances as features is simple and intuitive, such features

fail to take into account the direction and position of the

sprite. A sprite standing left to the avatar and another sprite

standing right to it will have the same feature values,

provided that the Euclidean distances are the same. The

feature extraction employed by Perez et al. oversimplifies

the game state, and replacing Euclidean distances with

another set of features should provide better result.

3.2 Potential Field in Game AI

The concept of potential field has provided us inspiration

for a new feature definition in biased MCTS. Proposed by

Khatib, potential field originated as an application in

robotics [5]. In the potential field approach, the robot moves

in a field of force, where the goal is an attractive pole and

the obstacles are repulsive surface. The robot moves

through the space by heading towards attractive pole while

avoiding repulsions.

Potential field is found useful not only in robotics, but

also in game AI. Hagelback applied potential field in

StarCraft, a famous computer strategy game, and created

an AI that can navigate 2D game maps using a

combination of potential field and A* algorithm [6]. In the

proposed method, interesting objects are assigned

attracting force field and obstacles are assigned repulsing

force field. The force field is strongest at its center but

generally degrade over distance from the center. After

calculating all the effects of potential fields emitted by

nearby objects, the agent will then move to the position

with the highest potential, meaning the most attracting

position. The total potential at the position (x, y) is

calculated by:

𝑝𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦) = ∑ 𝑤𝑖𝑝𝑖(𝑥, 𝑦)𝑁
𝑖=1 (3)

 In (3), N is the number of objects that are affecting

position (x, y), and wi is the weight for subfield i. Hagelback

also proposed an improvement to the formula, which

consider only the strongest enemy field, instead of the

weighted sum of all enemy field, so as to avoid being stuck

in a local optima, and to avoid mistakenly marching into

enemy’s territory. Nonetheless, Hagelback’s work has

shown that potential field is useful in navigating 2D game

map, and the next section of this paper will propose

applying potential field as a bias for MCTS.

4．PROPOSED METHOD

 Our proposed method is based on the KB Fast-Evo

MCTS proposed in [4], but replaces the Euclidean distance

feature with a potential-field-based feature. During the

biased rollout, the probability that the avatar will move into

a position is determined by its total potential, avatar is more

likely to move to a position with higher total potential. The

total potential at a position is calculated by aggregating all

subfield generated by the closest NPC, resource, non-

static object and portal, using a formula similar to (3).

Whether a sprite emits attracting force or repulsive force

depends on whether it is a beneficial sprite, unknown sprite

or a hostile sprite, as determined by the knowledge base.

The strength of force of each subfield is trained using

Evolutionary Strategy, similar to how Fast Evolutionary

MCTS trains its weight vector.

While both methods are based on Perez et al.’s KB Fast-

Evo MCTS, our proposed method differs significantly from

the Knowledge-based Pathfinding MCTS proposed in [7].

The method proposed in [7] combines Perez et al.’s

method with pathfinding algorithm; in the first 50 game

steps of each game, the AI will play the game using the

exact KB Fast-Evo MCTS as described in [4], and acquire

knowledge of the game through the biased rollouts. After

that, the AI will switch to pathfinding mode, and identify

targets by consulting its knowledge base. On the other

hand, our method does not use any pathfinding algorithm.

Instead, our method improves KB Fast-Evo MCTS by

defining a new set of features and weight vector for the

biased rollout. The following paragraphs will detail the

feature extraction, weight training and biased rollout in our

proposed method.

4.1 Feature Extraction

For each game state, the positions of the closest NPC,

resource, non-static object and portal, as well as the

position of the avatar, are extracted as features. In most

games featured in the GVG-AI framework, the game map

Fig. 3. An example game state in GVG-AI games

is a 2D grid in which position can be represented as

integral coordinates. Thus, the position of every sprite can

be easily represented by two integers and stored in

memory. In case that the game supports decimal

coordinates, the decimal values are rounded down to

integers.

For instance, in the game state illustrated by Fig. 3, the

avatar is positioned at the center, in between a resource

and a pink NPC, which have a type number 1 and 2

respectively. The coordinates of the upper-leftmost corner

are defined as (0, 0). The feature extraction function will

extract [1: (0, 1)], [2: (4, 3)] and [A: (2, 2)] from the state,

meaning that a sprite of type 1 is positioned at (0, 1), sprite

of type 2 at (4, 3) and avatar (A) at (2, 2). Later in the

biased rollout, potential fields will be assigned to these

positions.

A point to be noted here is that, it is easy to calculate the

Manhattan distance between two object oi and oj using this

feature extraction:

𝑚𝑎𝑛𝐷𝑖𝑠𝑡(𝑜𝑖 , 𝑜𝑗) = |𝑜𝑖 . 𝑥 − 𝑜𝑖 . 𝑥| + |𝑜𝑖 . 𝑦 − 𝑜𝑖 . 𝑦| (4)

 In (4), oi.x and oi.y represents the x coordinate and y

coordinate of object oi respectively. The Manhattan

distance will be used in calculating the force of field at a

position in the biased rollout.

4.2 Weight Training

The weight vector W contains a decimal weight value wi

for each sprite type i in the game. The value of wi will

determine the strength and affecting area of the sprite type

i during the biased rollout. Thus, the number of dimensions

of W equals to the number of sprite types in the game.

This weight vector is trained by a (4 + 1) Evolutionary

Strategy, which maintains a population of 4 individuals plus

1 mutant. Let avg(width, height) donates the average value

of the width and height of the game map, the noise value nj

and weight value wij for sprite type i of an individual j is

initialized by:

 𝑛𝑗 = avg(width, height)/ 5 (5)

 𝑤𝑖𝑗 = avg(width, height) + 𝑛𝑗 × 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐸𝑟𝑟𝑜𝑟() (6)

 The gaussianError() function provides a normally

distributed decimal value with mean 0.0 and standard

deviation 1.0. At the start of the program, 4 individuals will

be generated using the above formulae. The fitness is set

to negative infinity in the beginning.

 Before the first rollout, two parents are selected

randomly from the population, in order to generate a new

mutant. Each weight value wij in the new mutant is selected

randomly from either of the parents. Mutation is performed

by adding a noise value, calculated by nj X gaussianError(),

is to wij in the new mutant. The initial fitness of new mutant

is set to 0. The new mutant is then used in biasing MCTS

rollouts, the rewards from which are accumulated in the

fitness value of the mutant.

After 100 rollouts, an evolution will be performed to

update the population and generate a new mutant. If the

fitness value, i.e. the accumulated total rewards value of

the 100 rollouts, is higher than the fitness of the worst

individual in the population, the mutant will replace that

individual and the evolution is considered a success;

otherwise the mutant will be discarded and the evolution is

failed. To generate a new mutant, a random individual and

the best individual are selected as parents, following the

crossover and mutation procedure described in the

previous paragraph. The above process is iterated until the

end of the game. The noise value nj will be increased if the

evolution succeeds, and reduced if the evolution fails.

4.3 Biased Rollout

During every step in the biased rollout, the avatar will

have to decide which direction (Up, Down, Left or Right) to

move to. In random rollout, the direction is selected

randomly. However, in our proposed method, the direction

is selected according to the total potentials of each

adjacent position.

For each sprite type i in the feature set F, a potential field

is created with the position fi as the center. The strength of

the field equals to wi of the weight vector W, and the

strength is decreased by 1 as the Manhattan distance from

the sprite increases by 1. In other words, given a potential

field of sprite i centered at pa and another position pb, if

manDist(pa, pb) > wi, the potential field of sprite i will have

no effect on the position pb.

The field type of the sprite is decided by the knowledge

base. If past experience has shown that the sprite type

generates a score gain, or if there is no record of that type

in the knowledge base, it will be assigned an attracting

force; on the other hand, if the sprite type begot score loss

upon collision in the past, the sprite will be attached a

repulsive force. In our implementation, attracting force is

represented as positive decimal values (wi) while repulsive

force as negative decimal values (-wi).

 When deciding the next direction, the total potential of

each neighboring position px, as illustrated in Fig 4, are

calculated using the following formula:

𝑝𝑡𝑜𝑡𝑎𝑙(𝑝𝑥) = ∑ 𝑠𝑖𝑔𝑛(𝑖)|𝑤𝑖 − 𝑚𝑎𝑛𝐷𝑖𝑠𝑡(𝑝𝑥 , 𝑝𝑖)|𝑁
𝑖=1 (7)

Fig. 4. Neighboring positions of the avatar

In (7), N is the number of objects that are affecting

position px, and wi is the weight value for the type i. The

return value of sign(i) is either 1 or -1, and is determined by

whether type i is hostile, beneficial or unknown in the

knowledge base.

After calculating the total potential of all neighboring
position, a roulette selection is performed on the four
values to determine which position the avatar shall move
into. Positions with higher potential have higher chance of
being selected. In case there is negative value in the total

potential values, |min
𝑥

𝑝𝑡𝑜𝑡𝑎𝑙(𝑝𝑥)| + 1 is added to all

potential values to ensure all potential values are positive
before the roulette selection.

 There are games where the avatar can perform actions

other than movements, e.g. in Zelda, the avatar can move

in four directions and attack approaching enemies; in

games like Seaquest and Aliens, the avatar can shoot at

enemies besides moving. In these games, an additional

weight for action wa is added into the weight vector and

roulette selection is performed on the value wa along with

all total potential values of neighboring positions. If action is

selected, the avatar will perform the action instead of

movement in the rollout. The value of wa is trained by

Evolutionary Strategy along with other weight values.

 Furthermore, there are games where movement is

restricted. For example, in games like aliens and

Eggomania, the avatar can only move horizontally, not

vertically. In such cases, the potential values of the

corresponding positions (pu and pd) are ignored in the

roulette selection.

5．EXPERIMENTS

5.1 Comparison with KB Fast-Evo MCTS and MCTS

 Experiments are conducted to compare the performance

of our proposed method with the Perez et al.’s KB Fast-Evo

MCTS and random MCTS. The test procedure is similar to

that in [7]. In our experiment, each controller played all

games in the training set and validation set of the 2014

GVG-AI Competition, and the controllers’ performance in

these games were compared. In each set, there are 10

games, each of which has 5 levels. For every game level,

each controller will play the game until the game ends,

meaning either the controller wins or loses the game, or the

time limit (2000 game steps for most games) is reached.

To ensure fairness, each game used the same random

seed for all controllers and all levels. The tests were

performed in a Mac OS X environment. Similar to the GVG-

AI Competition, the controller with the highest win

percentage was considered victorious among the three

controllers. The average scores were compared instead, if

the win percentages were the same.

In our experiment, the source code of KB Fast-Evo

MCTS was provided by the main author of [4]. The

TABLE I. EVALUATION RESULTS USING THE 2014 TRAINING SET

Proposed Method KB Fast-Evo MCTS Random MCTS

Avg Win_Rate Avg Win_Rate Avg Win_Rate

aliens 70.8 1 64.12 1 61.6 0.96

boulderdash 11.88 0.08 8.16 0 7.32 0.04

butterflies 25.6 1 24.16 1 28.8 0.96

chases 3.44 0.12 2.76 0.08 0.84 0

flogs -1.12 0.24 -1.28 0.24 -1.36 0.08

missilecommand 3.84 0.56 4.2 0.64 0.72 0.36

portals 0.2 0.2 0.24 0.24 0.08 0.08

sokoban 0.92 0.28 1.04 0.24 0.72 0.08

survivezombies 34.76 0.4 31.4 0.4 32.12 0.4

zelda 2.76 0.04 1.68 0 2.28 0.04

Victory 8 2 0

TABLE II. EVALUATION RESULTS USING THE 2014 VALIDATION SET

Proposed Method KB Fast-Evo MCTS Random MCTS

Avg Win_Rate Avg Win_Rate Avg Win_Rate

camelRace -0.6 0.16 -0.2 0.4 -0.68 0.12

digdug 28.44 0 22.16 0 15.88 0

firestorms -0.96 0.08 -1.36 0 -3.08 0

inflection 5.36 0.76 5.48 0.84 6.36 0.84

firecaster 6.88 0 5.32 0 6.88 0

overload 14.4 0.16 14 0.08 13.72 0.08

pacman 133.96 0 111.96 0 152.68 0

seaquest 289.76 1 530.16 0.88 586.36 0.6

whackmole 9.52 0.84 3.4 0.44 1.56 0.68

eggomania 8.56 0.16 2.4 0 1.84 0

Victory 6 1 2

sampleMCTS package on the GVG-AI Competition official

webpage, which was based on Upper Confidence Tree,

was used as the random MCTS. The Rollout out depth was

set to 10 for all MCTS rollouts.

As illustrated in Table 1 and Table 2, our proposed

method achieved a better performance overall. Our method

won in 16 games out of 20 games against Perez et al.’s

method; also, our method won in 17 games out of 20

games against random MCTS, and drew 1 game. In

contrast to random MCTS that performs rollouts randomly,

our method used knowledge base and feature extraction to

search the game space more effectively. Compared with

the Euclidean distance feature used by Perez et al.’s

method, the potential-field-based bias used by our

proposed method were able to preserve both distances

and positions of sprites, without oversimplifying the game

state. Therefore, our proposed method is able to

outperform both Perez et al.’s method and random MCTS.

5.2 A Closer Look at the Weight Vector in aliens

 In order to observe how the weight evolves, a closer look

at the weight vector in an aliens level was observed and

plotted in Fig. 5. In aliens, illustrated by Fig. 6, avatar gains

score by shooting missile at the aliens and the barricades,

while avoiding bombs dropped by the aliens. As shown in

Fig. 5, the weight for ACTION (shootnig) and aliens’ bomb

increased through the game, meaning the avatar had

higher tendency to shoot missile and avoid aliens’ bombs

in the rollout, which is a logical tactics in the game. The

weight for barricade was maintained at a relatively high

level, as the result, the avatar stayed closer to the

barricade and shot more often at barricade, leading the

higher score gain. Overall, the evolution of weight vector

led the avatar to behave in a way that engendered higher

score, thus illustrating how evolution of weight vector

begets better performance than other method.

6．CONCLUSIONS AND FUTURE WORKS

 This paper proposes the use of potential field as bias in

Monte Carlo rollouts in a GVGP settings, and experiment

shows that potential field bias offered an improvement over

existing method that used Euclidean distance as feature. In

the current stage, our method uses a simple Evolutionary

Strategy to train the weight vector. As a future work, we

aim at further advancing this method by replacing

Evolutionary Strategy with machine learning technique.

ACKNOWLEDGEMENT

This work was supported in part by JSPS KAKENHI

Grant Number 15H02939.

REFERENCE

[1] J. Levine, C. B. Congdon, M. Bida, M. Ebner, G. Kendall, S.

Lucas, R. Miikkulainen, T. Schaul and T. Thompson, “General
Video Game Playing”, Artificial and Computational
Intelligence in Games: A Follow-up to Dagstuhl Seminar
12191, 2012, pp. 77-83.

[2] T. Schaul, “A Video Game Description Language for Model-
based or Interactive Learning”, Proceedings of the IEEE
Conference on Computational Intelligence in Games, 2013,
pp.1-8.

[3] S. M. Lucas, S. Samothrakis and D. Perez. “Fast Evolutionary
Adaptation for Monte Carlo Tree Search”, Applications of
Evolutionary Computation, Springer Berlin Heidelberg, 2014,
pp. 349-360.

[4] D. Perez, S. Samothrakis and S. M. Lucas, “Knowledge-
based Fast Evolutionary MCTS for General Video Game
Playing”, Proceedings of the IEEE Conference on
Computational Intelligence and Games, 2014, pp. 68-75.

[5] O. Khatib, “Real-time obstacle avoidance for manipulators
and mobile robots,” The International Journal of Robotics
Research, 1986.

[6] J. Hagelback, “Potential-field based navigation in StarCraft”,
Proceednigs of the IEEE Conference on Computational
Intelligence and Games, pp.388-393, 11-14 Sept. 2012

[7] Chun Yin Chu, Hisaaki Hashizume, Zikun Guo, Tomohiro
Harada, Ruck Thawonmas, "Combining Pathfinding Algorithm
with Knowledge-based Monte-Carlo Tree Search in General
Video Game Playing," Proc. of the 2015 IEEE Conference on
Computational Intelligence and Games (CIG 2015), Tainan,
Taiwan, Aug. 30 - Sep. 2, 2015.

Fig. 5. Changes of weight vector values in an aliens game

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

30

35

1 6 11 16 21 26 31 36 41 46 51

fi
tn

e
s

s

w
e

ig
h

t
v
a

lu
e

generation

barricade shoot
aliens' bomb best fitness

Fig. 6. A Screenshot of an aliens game

